If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.6x^2=135
We move all terms to the left:
0.6x^2-(135)=0
a = 0.6; b = 0; c = -135;
Δ = b2-4ac
Δ = 02-4·0.6·(-135)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18}{2*0.6}=\frac{-18}{1.2} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18}{2*0.6}=\frac{18}{1.2} =15 $
| 2(x+1)=3x-x+3 | | |-2x+1|=7 | | 25=10-3m | | x^2-6x+13=2x-3 | | 2x^2+3x+4=2x+36 | | -3m^2=9 | | M²+4m+8=0 | | –3y+9=–6y | | 28=-7/8y | | 15=-3(c-2) | | 41+3x+2=5x+7 | | 6x²-9=9 | | 23=2(h+5) | | 26=7{g-9}+12 | | 2(2n+3)=-26 | | 3y=2y-7 | | 2x+-3,1=1,1 | | 4x+8=24-4x | | 8a-6=2a-48 | | 2a-6=2a-48 | | 2.3=(1.05)^n | | 9=-3(-5-2n)-6(1-5n0 | | V=(10-2x)(10-2x)(x) | | c+9=13 | | 86-x^2=x^2+7/3x | | a+4(3a+7)=80 | | 9x14=6^2 | | f=(9,5)C+32 | | 1.8p=19.6 | | -3(3n-7)=84 | | x+(x+1)+(x+2)=(2x-6)+(2x+2) | | 4^6-x=1/16 |